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O
ne of the central tenets
of signal processing and
data acquisition is the
Shannon/Nyquist sam-
pling theory, which

states that the number of samples
required to capture a signal is dictated
by its bandwidth. It is not an overstate-
ment to say that this theory underlies
most sensing, signal acquisition, and
analog-to-digital conversion protocols
in use today. However, it is well known
that the Nyquist rate is a sufficient,
but by no means necessary, condition.
Over the last few years, an alternative
sampling/sensing theory, known as
“compressive sampling” or “com-
pressed sensing” (CS), enables the
faithful recovery of signals, images,
and other data from what appear to be
highly sub-Nyquist-rate samples. How
is this possible?

At the heart of the new approach are
two crucial observations. The first is
that the Shannon/Nyquist signal repre-
sentation exploits only minimal prior
knowledge about the signal being sam-
pled, namely its bandwidth. However,
most objects we are interested in
acquiring are structured and depend
upon a smaller number of degrees of
freedom than the bandwidth suggests.
In other words, most objects of interest
are sparse or compressible in the sense
that they can be encoded with just a
few numbers without much numerical
or perceptual loss.

The second observation is that the
useful information content in com-
pressible signals can be captured via
sampling or sensing protocols that
directly condense signals into a small
amount of data. A surprise is that

many such sensing protocols do noth-
ing more than linearly correlate the
signal with a fixed set of signal-inde-
pendent waveforms. These waveforms,
however, need to be “incoherent” with
the family of waveforms in which the
signal is compressible. One then typi-
cally uses numerical optimization to
reconstruct the signal from the linear
measurements.

In short, and in stark contrast with
conventional wisdom, the theory of CS
asserts that one can combine “low-rate
sampling” with computational power for
efficient and accurate signal acquisition.
This point of view is at once simple and
powerful: CS bypasses the current, often
wasteful, acquisition process in which
massive amounts of data are collected
only to be—in large part—discarded by a
subsequent compression stage, which is
usually necessary for storage and trans-
mission purposes. CS data acquisition
systems directly translate analog data
into a compressed digital form so that
one can—at least in principle—obtain
super-resolved signals from just a few
measurements. After the acquisition step,
all we need to do is “decompress” the
measured data through an optimization.

Retrieving information from signals
with intrinsically few degrees of free-
dom is a classic parameter estimation

problem, going back as far Prony’s
method of the late 18th century. In
modern signal processing, the retrieval
of sinusoids buried in noise has led to a
rich literature over the last three
decades. Posing this as a sampling prob-
lem for classes of nonbandlimited but
compressible signals is more recent, as
evidenced by the recent development of
sampling finite-rate-of-innovation sig-

nals (i.e., signals with a finite number
of degrees of freedom per unit time).
In this case, structured, deterministic
sampling kernels are used, allowing
continuous-time sampling at twice the
signal’s “innovation rate” rather than
twice its bandwidth. CS employs a
more general approach and is typically
based on random kernels and non-
parametric estimation techniques.
CS is very broadly applicable and
enables the recovery of any com-

pressible signal from very few samples.
The estimation framework is based on
solving an underdetermined linear sys-
tem of equations with a compressible
or sparse unknown.

This special section aims to present
the key ideas underlying the new CS
theory as well as selected applications
areas where the theory promises to have
a significant impact. With this in mind,
the articles have been selected to pro-
vide the reader with specific insights
into the basic theory, capabilities, and
limitations of CS. In addition, we hope
that the application articles will inspire
some readers to develop their own
novel applications.

On the theory side, six articles
overview the current state-of-the-art
in CS and related areas. Candès and
Wakin survey some foundational CS
results, showing that sparse signals
can be recovered perfectly from just aDigital Object Identifier 10.1109/MSP.2008.915557
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few incoherent measurements. They
also review the use of randomness to
design good sensing mechanisms
together with CS protocols that sup-
port robust signal reconstruction
from noisy or quantized sensor data.
Romberg argues that the incoherence
property is akin to the existence of an
uncertainty principle between the
sparsity domain and the measurement
domain, which generalizes the cele-
brated Weyl-Heisenberg uncertainty
relation between time and frequency. It
is precisely this
principle that
enables subsam-
pling without
information loss.
Blu et al. consid-
er the sampling
of continuous-
time signals that
are not bandlim-
ited but have a finite rate of innovation.
Interestingly, one can design sampling
kernels that enable perfect reconstruc-
tion of such signals provided that the
sampling rate is above twice the rate of
innovation. They also study the noisy
case and provide performance bounds
as well as practical algorithms for
reaching these bounds. Lu and Do pro-
vide a geometrical interpretation of
finite rate of innovation sampling and
draw connections with randomized
measurement techniques by modeling
the signal being acquired as coming
from a union of subspaces. Goyal,
Fletcher, and Rangan explore the impli-
cations of CS for lossy compression and
some of its relationships with universal
source coding. Finally, CS is connected
with exciting recent work in theoretical
computer science and randomized algo-
rithms. Gilbert et al. outline these con-
nections and present a randomized
algorithm to rapidly approximate the
discrete Fourier transform by minimal-
ly sampling the digital input in the
time domain. Beyond the obvious rela-
tionship with CS, an interesting corol-
lary is the existence of approximate
Fourier transform algorithms that are

in some cases faster than the fast
Fourier transform (FFT).

On the applications side, four arti-
cles survey the many ongoing efforts to
build a new generation of sensing
devices based on CS. Lustig et al. show
how CS can help reduce the scan time
in magnetic resonance imaging (MRI)
and offer sharper images of living tis-
sues. This is especially important
because time-consuming MRI scans
have traditionally limited the use of this
sensing modality in important applica-

tions. Simply
put, faster imag-
ing here means
novel applica-
tions. Duarte et
al. survey a sin-
gle-pixel digital
camera based on
a digital micro-
mirror device

that randomly modulates the light from
the scene under view to compute ran-
dom CS measurements. This enables
simpler, smaller, and cheaper digital
cameras that can operate efficiently
across a much broader spectral range
than conventional silicon-based cam-
eras. Healy and Brady survey a new
breed of optical devices that digitize
holographic measurements instead of
simple pixel samples. They also argue
that CS can help address the enormous
challenge of acquiring and processing
ultrawideband radio frequency signals.
Here CS enables the design of novel
analog-to-digital converter architec-
tures that exploit signal compressibility
in order to dramatically reduce the sam-
pling rate. Finally, Haupt et al. overview
some of the ongoing work in CS for the
decentralized compression and trans-
mission of data collected by a network
of sensors and show that the communi-
cation costs required to achieve a target
distortion level at a desired receiver can
be far less than the costs of convention-
al methods.

We hope that you will enjoy your
journey through the theory and applica-
tions of compressive sampling. [SP]
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